fill all or part of the tetrahedral and octahedral holes in these sublattices. All these structures are listed in Table 3 which gives the close packing of the sublattices and indicates which holes are filled and to what degree. The remaining structures are listed in Table 4.

References

- DEHLINGER, U. (1955). Theoretische Metallkunde. Berlin: Springer.
- EVANS, R. C. (1939). An introduction to crystal chemistry. Cambridge: University Press.
- GORDY, W. & THOMAS, W. J. O. (1956). J. Chem. Phys. 24, 439.

Hägg, G. (1931). Z. phys. Chem. B, 12, 33.

- HUME-ROTHERY, W. & RAYNOR, G. V. (1954). The structures of metals and alloys. London: Institute of Metals.
- JUNOD, P., MOOSER, E. & SCHADE, H. (1956). Helv. Phys. Acta, 29, 193.
- KREBS, H. & SCHOTTKY, W. (1954). Halbleiterprobleme I, p. 25. Braunschweig: Vieweg.
- LAVES, F. (1956). Theory of alloy phases, p. 124. The Americ. Soc. for Metals. Cleveland, Ohio.
- MOOSER, E. & PEARSON, W. B. (1957). Helv. Phys. Acta, 30, 222.
- PEARSON, W. B. (1957). Canad. J. Phys. 35, 886.
- PEARSON, W. B. (1959). Canad. J. Chem. 37, 1191.

Acta Cryst. (1959). 12, 1022

The Crystal Structures of α -V₃S and β -V₃S

By B. Pedersen and F. Grønvold

Kjemisk Institutt A, Universitetet i Oslo, Blindern, Norway

(Received 24 March 1959 and in revised form 6 May 1959)

The structures of a new, dimorphous vanadium sulphide, V_3S , have been determined using singlecrystal data.

 α -V₃S, which is stable above 950 °C., has a body-centred, tetragonal structure with cell dimensions: a = 9.470, c = 4.589 Å. Space group $I\overline{4}2m$ with 8 V in (i) with $x_1 = 0.0932$ and $z_1 = \frac{3}{4}$, 8 V in (i) with $x_2 = 0.2000$ and $z_2 = \frac{1}{4}$, 8 V in (f) with $x_3 = 0.3550$, 8 S in (g) with $x_4 = 0.2851$. β -V₃S, which is stable below 825 °C., has a tetragonal structure with cell dimensions: a = 9.381,

c = 4.663 Å. Space group $P4_2/nbc$ with 8 V in (j) with $x_1 = 0.4080$, 8 V in (j) with $x_2 = 0.2028$, 8 V in (i) with $x_3 = 0.1486$, 8 S in (h) with $x_4 = 0.2171$. (Origin at $\overline{4}$).

Besides being closely related to β -V₃S, the structure of α -V₃S is closely related to that of Ni₃P. The structure of β -V₃S shows relationships to the β -W structure type.

Introduction

In a recent study of the vanadium sulphides (Pedersen, 1958) a subsulphide, V_3S , was identified by means of X-rays. This was unsuspected, as no vanadium sulphide richer in vanadium than VS had been observed by earlier investigators (Vogel & Wüstefeld, 1938; Biltz & Köcher, 1939).

The V₃S samples were made by melting weighed quantities of sulphur and vanadium in stoichiometric proportions at about 1400 °C. in crucibles of pure alumina, placed inside silica tubes which were evacuated and sealed. Depending upon the heat treatment two different forms of V₃S were obtained. Single crystals of the high temperature form (α -V₃S) were found in samples quenched from 1400 °C., and single crystals of the low temperature form (β -V₃S) were found in samples tempered at 825 °C. for about one month. They were probably formed from single crystals of the high temperature form. β -V₃S changed back into α -V₃S after heat treatment at 1150 °C. for six hours. Other experiments showed that α -V₃S was formed at 950 °C. and the transformation is therefore assumed to take place at a temperature between 825 and 950 $^{\circ}\mathrm{C}.$

Crystal data

The single crystals were needle-shaped with dimensions

$$0.04 \times 0.04 \times 0.4$$
 mm.³ for α -V₃S

and

$$0.04 \times 0.05 \times 0.15$$
 mm.³ for β -V₃S.

Oscillation and Weissenberg photographs show that both forms have tetragonal symmetry, Laue symmetry 4/mmm, with the *c*-axis along the needle axis. Cell dimensions determined from powder photographs taken with Cu K radiation ($\lambda_{x1} = 1.5405$ Å) and densities, measured pycnometrically at 25.00 °C., are:

$$\alpha$$
-V₃S $a = 9.470$, $c = 4.589$ Å $D_o = 5.895$ g.cm.⁻³
 β -V₃S $a = 9.381$, $c = 4.663$ Å $D_o = 5.939$ g.cm.⁻³.

The observed densities indicate that the unit cell of both forms contain 8 V₃S-groups ($Z_c = 7.90$ for α -V₃S and 7.95 for β -V₃S). Missing reflexions are:

		\mathbf{for}	α -V ₃ S	for β -V ₃ S
hkl	when	h+k+l	= 2n + 1	no conditions
hk0	when	(h+k)	= 2n+1)	h+k = 2n+1
0kl	when	(k+l)	= 2n+1)	k = 2n + 1
hhl	when	(l	= 2n + 1)	l = 2n + 1

Characteristic space groups for α -V₃S are accordingly: 1422, 14mm, 14/m2, 142m and 14/mmm. The characteristic space group for β -V₃S is P4₂/nbc. Both forms have symmetry p4m in the 001-projection with $a'=b'=\frac{1}{2}l/(2)a$.

Determination of the structures

The intensities of the hk0 and hk1-reflexions for both α -V₃S and β -V₃S were estimated visually from 'multiple film' Weissenberg photographs taken with Cu*K*radiation. The intensities were corrected for Lorentz and polarization factors, but not for absorption and extinction. A temperature correction was not applied since *B* (in exp $(-B \sin^2 \theta / \lambda^2)$) for the *hk*0-material of α -V₃S was calculated as only 0.05, which shows that the absorption and temperature effects nearly balance each other.

Throughout this paper the agreement between F_o and F_c is expressed by the reliability index, $R = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. F_c -values corresponding to undetected reflexions have been added with their half value.

The structure of α -V₃S

On the basis of the corrected $F(hk0)^2$ -values a Patterson map was computed. Its interpretation was not easy as about one hundred larger and smaller maxima were present (Fig. 1). Related compounds were therefore looked for, and among the Me_3B compounds the Ni₃P and β -W(W₃O) structure types found to be rather common. Of these, the Ni₃P-structure, which was

Fig. 1. Patterson projection of α -V₃S on (001). The contours are at equal but arbitrary intervals. Zero and negative contours are broken.

worked out by Aronsson (1955) from single-crystal data, showed relationships with the α -V₃S structure.

Both Ni₃P and α -V₃S are body-centred tetragonal with eight Me_3B groups in the unit cell and have about the same lattice dimensions (a=8.952, c=4.388 Å for Ni₃P). There is, however, an important difference between them, as Ni₃P has Laue symmetry 4/m, while α -V₃S has Laue symmetry 4/mmm.

Fig. 2. The structure of Ni_3P viewed along the *c*-axis. Large circles indicate the nickel atoms and small circles the phosphorus atoms. Numbers in the circles give the *z*-parameters of the atoms in fourths.

Fig. 3. The structure of α -V₃S viewed along the *c*-axis. Large circles indicate the vanadium atoms and small circles the sulphur atoms. Numbers in the circles give the *z*-parameters of the atoms in fourths.

In α -V₃S $\frac{1}{5}\sqrt{(2)a}$ is 2.68 Å, i.e., $\frac{1}{5}$ of the diagonal is thus equal to the distance between two vanadium atoms in twelve coordination (2.68 Å (Pauling, 1947)). Furthermore, the highest peaks in the Patterson map lie along this diagonal. From the projection of the structure of Ni₃P, shown in Fig. 2, it can be seen that eight metal atoms are located close to each diagonal. It seems then reasonable to assume that in α -V₃S the metal atoms lie on the diagonal, and that the remaining atoms are aligned parallel to the a- and b-axes. This would give α -V₃S the necessary higher symmetry as indicated in Fig. 3. The suggested structure is in agreement with the Patterson map, and on its basis preliminary parameters for the atomic positions were deduced. Structure factors were calculated, and after adjusting F_o and F_c to the same scale, the R-value obtained was 0.31. This agreement gives an indication that the main features of the proposed structure are correct.

The atomic parameters were refined further by means of two Fourier and one difference synthesis. R decreased to 0.22 after the second Fourier synthesis and to 0.12 after the difference synthesis. This reflects the large effect associated with the termination of the Fourier series. The observed and calculated F(hk0)values are listed in Table 1, and the second Fourier map is shown in Fig. 4. The final parameters, referred to the body-centered axes, are:

1.	8 V	\mathbf{in}	x = 0.0932	y = 0.0932,	etc.
2 .	8 V	\mathbf{in}	x = 0.2000	y = 0.2000,	etc.
3.	8 V	in	$x \!=\! 0 \!\cdot\! 3550$	y=0, etc.	
4.	$8 \mathrm{S}$	\mathbf{in}	x = 0.2851	y=0, etc.	

It might be assumed that the z-coordinates in α -V₃S are the same as for the corresponding atoms in Ni₃P. To test this assumption an attempt was made to obtain data for a new projection, but this was unsuccessful. The crystals were needle-shaped with the *c*-axis as needle axis, and the intensities for other

projections than 001 were therefore subject to absorption errors which are very difficult to correct for. The only possibility left was to evaluate intensities of

Fig. 4. Fourier projection of α -V₃S on (001). Contours are at intervals of 10 e.Å⁻². The zero contour is broken.

higher layer lines with the *c*-axis as rotation axis. The assumed *z*-coordinates were tested by comparing $|F(hk1)|_o$ with $|F(hk1)|_c$. The agreement was so good, R=0.13, that the selection of equal *z*-coordinates for α -V₃S and Ni₃P seems justified, see Table 1.

The space group for the deduced atomic arrangement is $I\bar{4}2m$ with

1. 8 V in (i) with
$$x_1 = 0.0932$$
 and $z_1 = \frac{3}{4}$
2. 8 V in (i) with $x_2 = 0.2000$ and $z_2 = \frac{1}{4}$
3. 8 V in (f) with $x_3 = 0.3550$
4. 8 S in (g) with $x_4 = 0.2851$

								-	-		
hkl	F_{o}	$\frac{1}{4}F_c$	hkl	F_{o}	$\frac{1}{4}F_c$	hkl	$ F _o$	$\frac{1}{4} F _c$	hkl	$ F _o$	$ F _c$
200	0	+ 3.1	530	7.4	-4.8	101	$2 \cdot 3$	$2 \cdot 6$	431	10.9	11.5
400	6.9	+6.4	730	31.6	+29.1	301	12.2	14.9	631	16.2	16.9
600	13.1	+12.3	930	0	+3.7	501	11.1	15.2	831	31.0	28.2
800	0	+4.5	11,3,0	15.9	+15.1	701	15.4	16.0	10.3.1	13.8	10.5
10,0,0	47.3	+48.0				901	13.2	14.4			
			440		(+3.5)	11,0,1	10.2	6.0	541	$8 \cdot 2$	7.8
110	0	+1.2	640	21.6	+18.5				741	32.1	32.7
310	$4 \cdot 3$	-4.3	840	7.5	-5.2	211	2.3	2.9	941	33.4	29.3
510	$27 \cdot 1$	-31.4	10,4,0	14.7	-14.7	411	46.3	47.7	11.4.1	15.4	18.8
710	28.0	-30.2	~~~	00.0		611	23.8	28.2			100
910	0	+0.2	550	39.3	+35.7	811	0	2.3	651	21.5	18.0
11,1,0	21.4	+21.0	750	10.4	-13.2	10,1,1	20.6	17.8	851	19.4	14.9
			990	12.9	-11.1	1			10.5.1	8.6	5.3
220	0	- 1.3	660	36.9	+31.7	321	48.3	41.4	; , , , ,		
420	30.4	-35.7	860	7.6	+5.2	521	15.9	15.6	761	13.9	9.9
620	20.3	-19.9	10.6.0	7.7	-9.3	721	28.6	29.4	961	$24 \cdot 0$	27.1
820	$9 \cdot 2$	+8.9		•••		921	14.5	14.3			
10,2,0	19.9	-22.0	770	18.7	+13.2	11,2,1	14.3	10.2	871	$25 \cdot 5$	$25 \cdot 2$
			970	14.4	-14.6						
330	58.5	+62.4	880	15.4	+18.5						

Table 1. Observed and calculated structure factors for α -V₂S

The structure of β -V₃S

As previously mentioned, the symmetry of β -V₃S in the 001-projection is the same as for α -V₃S. Furthermore, the intensities of the *hk*0-reflexions of β -V₃S are almost equal to those of the corresponding reflexions of α -V₃S. The projection of β -V₃S and α -V₃S in the 001-plane must therefore be nearly the same. This assumption was supported by the value 0.21 for the reliability index, obtained on the basis of F_o -values from β -V₃S and F_c -values from α -V₃S. A further refinement of the atomic parameters by means of one Fourier and two difference syntheses resulted in R=0.16, see Table 2, and the following parameters:

1.	8 V	in	(j)	\mathbf{with}	$x_1 = 0.4080$
2.	8 V	in	(j)	with	$x_2 = 0.2028$
3.	8 V	\mathbf{in}	(i)	with	$x_3 = 0.1486$
4.	8 S	in	(h)	with	$x_4 = 0.2171$

According to the systematic absences, the characteristic space group of β -V₃S is $P4_2/nbc$ (the parameters given refer to the origin at $\overline{4}$). The Fourier projection then shows that the atoms are in special positions with fixed z-coordinates. The structure of β -V₃S is thus completely determined by its 001projection. Further support for the correctness of the structure is found in the good agreement between observed and calculated F(hk1)-values, R=0.18, see Table 2. The structure of β -V₃S is shown in Fig. 5 with origin at 4_2 , 0, $\frac{1}{2}$, $\frac{1}{4}$ from $\overline{4}$, which makes it easy to compare with that of α -V₃S.

Positions 1 and 2 above are the same as for α -V₃S,

Fig. 5. The structure of β -V₃S viewed along the *c*-axis. Large circles indicate the vanadium atoms and small circles the sulphur atoms. Numbers in the circles give the *z*-parameters of the atoms in fourths.

hkl	F_{o}	$\frac{1}{4}F_c$	hkl	F_o	$\frac{1}{4}F_c$	hkl	$ F _o$	$\frac{1}{4} F _c$	hkl	$ F _o$	$\frac{1}{4} F _c$
200	0	-1.9	10,4,0	14.7	13.3	111	0	0	931	0	6.1
400	8.2	+10.4				211	0	0.1	10,3,1	$12 \cdot 1$	6.7
600	12.4	+9.8	550	35.8	+33.1	311	14.3	17.3	11,3,1	0	$3 \cdot 4$
800	0	+4.3	750	17.0	-14.6	411	$34 \cdot 3$	$39 \cdot 2$			
10,0,0	43.5	+45.5	950	$8 \cdot 3$	-6.6	511	17.2	15.7	441	0	0
12.0.0	9.6	+9.4				611	$25 \cdot 2$	28.0	541	10.6	6.5
/-/-			660	39.0	+32.0	711	14.0	14.0	641	27.5	26.6
110	0	+2.2	860	10.7	+7.0	811	0	$2 \cdot 6$	741	0	3.0
310	0	-2.5	10,6,0	$9 \cdot 9$	-11.6	911	15.9	16.6	841	$24 \cdot 6$	17.7
510	28.2	-32.8				10,1,1	10.0	9.9	941	31.7	28.4
710	26.5	-30.7	770	21.0	+16.6	11,1,1	$6 \cdot 6$	5.1	10,4,1	0	$0 \cdot 1$
910	0	+1.9	970	16.9	-15.4				11,4,1	16.2	16.4
11.1.0	24.7	+19.6				221	0	0			
,-,-		•	880	15.2	+14.7	321	36.6	40.1	551	0	0
220	0	-1.4	1			421	20.2	16.5	651	0	$3 \cdot 8$
420	31.0	-37.4				521	0	4.8	751	28.5	23.9
620	17.0	-18.4	hkl	$ F _o$	$\frac{1}{4} F _c$	621	$6 \cdot 6$	9.4	851	0	$3 \cdot 7$
820	0	+4.9	101	0	0	721	$24 \cdot 3$	22.7	951	0	$5 \cdot 0$
10.2.0	23.5	-24.0	201	0	0.1	821	0	1.1	10,5,1	0	$2 \cdot 4$
			301	0	0	921	$9 \cdot 2$	$6 \cdot 3$			
330	53.3	+61.2	401	23.6	25.0	10,2,1	19.6	$15 \cdot 1$	661	0	0
530	$8 \cdot 2$	-5.8	501	0	0	11,2,1	12.4	8.4	761	0	4.4
730	30.0	+29.8	601	7.2	8.5				861	0	5.4
930	0	+3.5	701	0	0	331	0	0	961	21.4	20.6
11.3.0	19.2	+17.7	801	0	$1 \cdot 2$	431	8.0	4.1			
			901	0	0	531	0	0.8	771	0	0
440		(+6.0)	10.0.1	19.3	15.6	631	10.6	7.2	871	25.6	20.1
640	22.6	+19.1	11,0.1	0	0	731	25.9	24.5	971	20.1	24.3
840	9.6	-5.9				831	$29 \cdot 9$	29.8	ļ		

Table 2. Observed and calculated structure factors for β -V₃S

while positions 3 and 4 differ in the two structures by a translation of c/2 along the c-axis for the atoms grouped around $x=0, y=\frac{1}{2}$ only. Accordingly, the F(hkl)-values for the two structures are equal when l is even. This is just what has been observed, as the Weissenberg photographs of α -V₃S and β -V₃S are equal for hk0 and hk2, the only accessible layer lines with l even for Cu-radiation. It follows from the geometrical structure factors * that when l is odd only atoms in positions No.1 and 2 cause reflexions with h+k=2n+1, while atoms in positions 3 and 4 cause the remaining reflexions. It is therefore interesting to note, that in the first layer the former reflexions are sharp, while the latter are more diffuse. A reasonable explanation of this is that the crystals of β -V₃S are formed from those of α -V₃S by movement of the atoms in positions 3 and 4.

Discussion of the structures

The structures of α -V₃S and β -V₃S can be said to consist of vanadium atoms in the diagonal planes parallel to the *c*-axis. Between these are located columns of interwoven tetrahedra of vanadium and sulphur atoms in equal proportions. Each vanadium in the column is surrounded by sulphur atoms at the corners of a tetrahedron. The only difference between the structure of α -V₃S and β -V₃S is a translation, of magnitude c/2, of the column around x=0, $y=\frac{1}{2}$. The interatomic distances between nearest neighbours cal-

Table 3. Interatomic distances

Interatomic distances in α -V₃S (Å)

- 1. V $\begin{array}{c} -12 \text{ V} & 2.50; \ 2.70 \ (2); \ 2.77; \ 2.87 \ (2); \ 2.90 \ (4); \ 2.96 \ (2) \\ -2 \text{ S} & 2.32 \ (2) \end{array}$ s V $\begin{array}{c} -9 \text{ V} & 2.66 \ (4); \ 2.70 \ (2); \ 2.77; \ 2.96 \ (2) \end{array}$
- $2 \cdot v = 2 \text{ S} + 2 \cdot 36 (2)$
- 3. V $\begin{array}{c} -9 \text{ V} & 2 \cdot 66 \ (2); \ 2 \cdot 75; \ 2 \cdot 87 \ (2); \ 3 \cdot 00 \ (4) \\ -4 \text{ S} & 2 \cdot 39 \ (2); \ 2 \cdot 46 \ (2) \end{array}$
- 4. S 8 V 2·32 (2); 2·36 (2); 2·39 (2); 2·46 (2) - 0 S

```
Interatomic distances in \beta-V<sub>3</sub>S (Å)
```

1. V	-12 V - 2 S	2·44; 2·76 (2); 2·83 (2); 2·85; 2·90 (4); 2·95 (2) 2·31 (2)
2. V	- 9 V - 2 S	2.63 (2); 2.65 (2); 2.76 (2); 2.85; 2.95 (2) 2.35 (2)
3. V	- 9 V - 4 S	2.63 (2); 2.79 ; 2.83 (2); 3.03 (4) 2.42 (2); 2.47 (2)
4. S	- 8 V - 0 S	2·31 (2); 2·35 (2); 2·42 (2); 2·47 (2)

The standard deviation in the interatomic distances calculated according to Cruickshank (1949) is about 0.017 Å.

* The expression for B (origin at $\overline{4}$) given in the International Tables (1935, 1952) contains an error in sign. It should read:

 $\begin{array}{l} B = - \, 8 \, \sin^2 \, 2 \, \pi (h + k + l/4) \, \sin \, 2 \pi l z \\ \times (\sin \, 2 \, \pi (h x - l/4) \, \sin \, 2 \, \pi (k y + l/4) \\ + \, \sin \, 2 \, \pi (k x + l/4) \, \sin \, 2 \, \pi (k y + l/4)) \end{array}$

culated for the final parameters found for α -V₃S and β -V₃S are listed in Table 3.

In both structures the vanadium-vanadium distances are of the same magnitude as in metallic vanadium, where each vanadium atom is surrounded by eight vanadium atoms at the distance 2.66 Å and six at the distance 3.03 Å (Seybolt & Sumsion, 1953). One vanadium-vanadium distance within each unit cell is, however, definitely shorter than in metallic vanadium.

The vanadium-sulphur distances are considerably shorter than the sum of the Pauling (1947) metallic radii, $1\cdot34+1\cdot22=2\cdot56$ Å for vanadium in twelve coordination and sulphur in eight coordination. Similarly short vanadium-sulphur distances have been observed for the V₅S₄-phase and the V_{1-x}S-phase (Pedersen, 1958). In α -V₃S the shortest sulphursulphur distances between atoms in the same columns are 3.68 Å, and between atoms in different columns 3.81 Å. In β -V₃S the corresponding distances are 3.71 Å and 4.42 Å.

It is remarkable that vanadium forms a considerable number of V_3B compounds, where B= Ir, Pt, Rh, Co, Ni, Au, Si, Ge, Sn, As, Sb or P. All these, with the possible exception of V_3P , are of the β -W (A-15)-type structure (see Geller, 1956; Pauling, 1957). The one rather short vanadium-vanadium distance found in each of these compounds varies from 2.36 Å in V_3 Si to 2.47 Å in V_3 Sn. By comparing the β - V_3 S structure with the β -W structure one finds that they have characteristic features in common. In both structures similar V-B columns are found with the same relative orientation. The difference between the two structures lies thus only in the ordering of the remaining metal atoms. In β -W the metal atoms form chains and

Fig. 6. Surplus metal atoms in the β -V₃S (broken lines) and in the β -W structure (solid lines). Numbers in the circles give the z-parameters in fourths.

columns, while in β -V₃S they form nets. This is apparent from Fig. 6 and one can easily see how the metal atoms in the β -W structure must be moved to give the atomic arrangement in β -V₃S (the V-B columns have been omitted for the sake of clarity). It seems reasonable to suppose that this rearrangement causes little change in bond distance between the metal atoms in the V-V column. It is between these metal atoms that the short bond distance is observed in the β -W structure, and it is also between these atoms that the short V-V distance, 2.44 Å, is found in β -V₃S.

The structures of α -V₃S and Ni₃P are closely related, but α -V₃S has higher symmetry than Ni₃P. It might therefore seem natural to describe the structure of Ni₃P as a somewhat deformed α -V₃S structure. The Ni₃P structure is related to the β -W structure via the structures of α -V₃S and β -V₃S. That such a relationship might be expected is indicated by the remarks of Schønberg (Aronsson, 1955) that V₃P is isotypic with Ni₃P, and by Mathias *et al.* (1957) that V₃P has a slightly distorted β -W structure. The authors wish to thank Prof. Haakon Haraldsen for his interest in this study and for placing laboratory facilities at their disposal.

References

- ARONSSON, B. (1955). Acta Chem. Scand. 9, 137.
- BILTZ, W. & KÖCHER, A. (1939). Z. anorg. Chem. 242, 275.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- GELLER, S. (1956). Acta Cryst. 9, 885.
- Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger.
- International Tables for X-ray Crystallography (1952). Birmingham: Kynoch Press.
- MATHIAS, B. T., WOOD, E. A., CORENZWIT, E. & BALA, V. B. (1957). J. Phys. Chem. Solids, 1, 188.
- PAULING, L. (1957). Acta Cryst. 10, 374.
- PAULING, L. (1947). J. Amer. Chem. Soc. 69, 542.
- PEDERSEN, B. (1958). Thesis. University of Oslo.
- SEYBOLT, A. U. & SUMSION, H. T. (1953). J. Metals, 5, 292.
- VOGEL, R. & WÜSTEFELD, A. (1938). Archiv Eisenhüttenw. 12, 261.

Acta Cryst. (1959). 12, 1027

X-ray Studies on the Metal Complexes with the Glyoximes. II. Structure of the Pt-Dimethyl-Glyoxime

By Edoardo Frasson, Carlo Panattoni and Roberto Zannetti

Centro di Strutturistica Chimica del C. N. R. and Istituto di Chimica Organica, Universita' di Padova, Italia

(Received 1 April 1959 and in revised form 7 May 1959)

During a systematic investigation of the metal complexes of the glyoximes, the structure of Ptdimethyl-glyoxime has been examined. It has the same space group *Ibam* as Ni-dimethyl-glyoxime. The lattice constants are a = 16.73, b = 10.59, c = 6.47 Å; Z = 4. Such values are similar to those found in Ni-dimethyl-glyoxime.

The molecule is planar and the Pt-Pt distances between metallic atoms of overlying molecules are 3.23 Å. The intramolecular distance of 3.03 Å between the oxygen atoms bound by a hydrogen bond, is significantly longer than the one in Ni-dimethyl-glyoxime (2.44 Å) and in Cu-dimethyl-glyoxime (2.57-2.70 Å).

Introduction

In this Centro di Strutturistica Chimica we have examined a series of compounds having the following general formula:

This work has shown a variety of possibilities of packing as well as of molecular structure due to the differences of coordination of the metals as well as to the substituent group R present in the molecule.

Frasson, Bardi & Bezzi (1959) have recently described the structure of Cu-dimethyl-glyoxime showing the differences between it and the Ni-dimethylglyoxime studied by Godycki & Rundle (1953). The two structures are mainly differentiated by the pyramidal five-fold coordination of the copper, the lack of planarity of the molecule, the formation of a dimer through Cu-O bonds between atoms of different molecules on the one hand and the regular octahedral coordination of the Ni, the planarity of the molecule